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2.4.4 Les suites ci-dessous sont-elles‘ majorées, bornées, ., .
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2.4.5 Soit la suite (u,),>1 et € > 0. Si on accepte que la suite converge vers L, trouver
le plus petit entier positif N tel que | u,, — L |< €, pour tout n > N.
a) U, = 8 yavec L=0et e=0,1 b) unzl,avecLzletezo,%
n—2 n+1
En considérant e quelconque, démontrer que les suites ci-dessus sont convergentes.
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2.4.7 A laide du théoréme des deux gendarmes, calculer :
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2.4.8 Une suite récurrente est définie par w = V2 . .
Upt1 = V2Up , 8510 >1

a) Montrer que la suite (u,),>; est croissante et majorée par 2.

b) Prouver que la suite (u,),>1 est convergente et calculer sa limite.
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2.4.9 Une suite récurrente est définie par ‘ sin>1"
a) Montrer que la suite (u,),>1 est strictement décroissante et minorée par 0.
b) Prouver que la suite (u,),>1 est convergente et calculer sa limite.
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2.4.10 Une suite récurrente est définie par { gy = ATy ST "
a) Montrer que u, < 4, pour tout n > 1.

b) Montrer que u2,; — u? = (4 — u,)(3 + u,), puis en déduire que la suite (u,),>1 est
croissante.

c) Prouver que la suite (u,),>1 est convergente et calculer sa limite.
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2.4.12 Une suite récurrente est définie par { N an + 12
n+l =

a) On pose v, = a, — 4. Démontrer que (v,),>1 est une _

b) Donner le terme général de la suite (a,),>1, puis calculer sa limite.
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