Généralités sur les fonctions :

Corrigé

2.2.1 Déterminer l'ensemble de définition des fonctions suivantes : Fonctions polynomicles

a)
$$f(x) = 4 - 5x$$

b)
$$f(x) = x^2 - x - 2$$

c)
$$f(x) = (x+4)^2(2+x)$$

d)
$$f(x) = -6x^3 + 11x^2 - 3x$$

e)
$$f(x) = x^3 + 2x^2 - 4x - 8$$

f)
$$f(x) = x^4 + 5x^2 - 36$$

2.2.2 Déterminer l'ensemble de définition des fonctions suivantes : Faching reliencelle

a)
$$f(x) = \frac{x(x+4)}{3-2x}$$

b)
$$f(x) = \frac{2x}{16 - x^2}$$

c)
$$f(x) = \frac{(x+2)^2(x+1)}{x^2+x}$$

$$d) \quad f(x) = x - \frac{1}{x}$$

e)
$$f(x) = \frac{1}{x-5} + \frac{3}{x+1}$$

f)
$$f(x) = \frac{-5(4-x)^2}{(1-x^2)(2-x)}$$

a)
$$J(x) = \frac{x(x+h)}{3-2x}$$
 est définie si $3-2x \neq 0 = 2x \neq \frac{3}{2}$

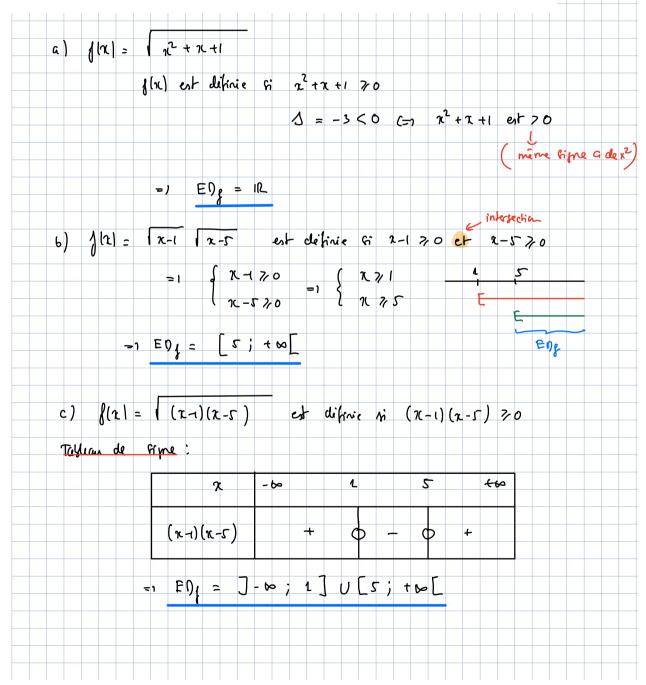
```
b) f(x) = \frac{2\pi}{16-x^2} est définie si 16-x^2 \neq 0 (=) (4-\pi)(4+\pi) \neq 0
                                   => x = 4 6u x = - a
            =1 EDj = 1R1{-4;4}
c) J(x) = \frac{(x+2)^2(x+1)}{x^2+x} ent définie si x^2+x\neq 0

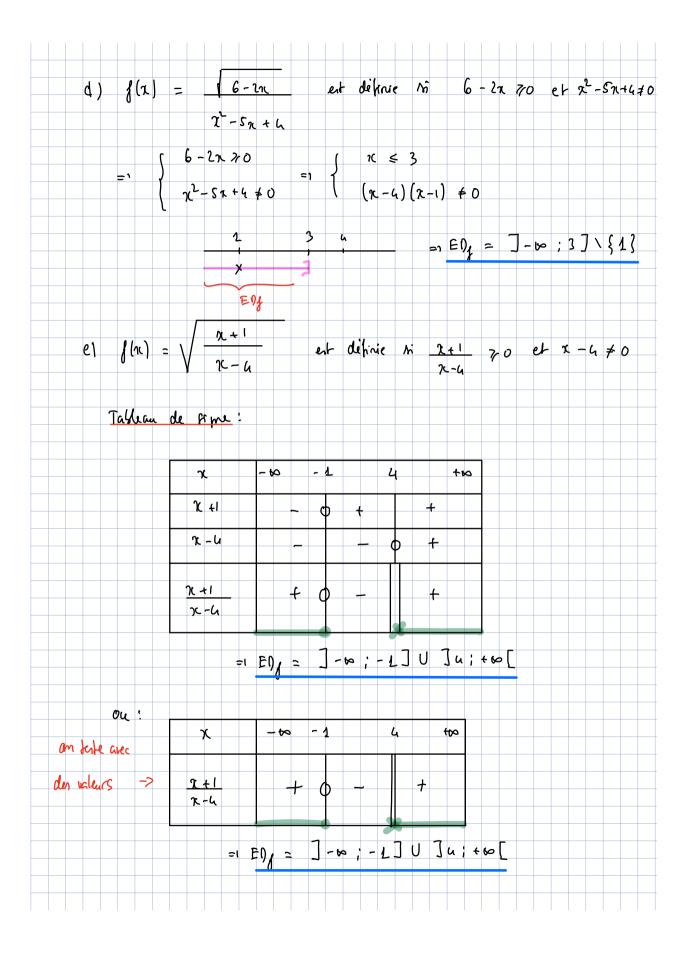
(=) x(x+1)\neq 0 =) x\neq 0 ou x\neq -1
      = 1 ED, = IR \ {-1;0} ou ED, = IR \ {-13
 d) f(x) = x - \frac{1}{x} est défine in x \neq 0
            >1 Ent = 10*
 e) J(x) = \frac{1}{x-5} est difficie si x-5 \neq 0 et x \neq 1
                                            X $ 5 et 1 4-1
        =1 ED, = 12\{-1;5}
f) f(u) = \frac{-5(4-x)^2}{(1-x^2)(2-x)} est définic si (1-x^2)(2-x) \neq 0
                                      >1 1-x2 + 0 ou 2-x + 0
                                      =1 (1-n)(1+x) +0 ou 2 + 2
      =1 ED; = 1R\{-1; L; 2}
```

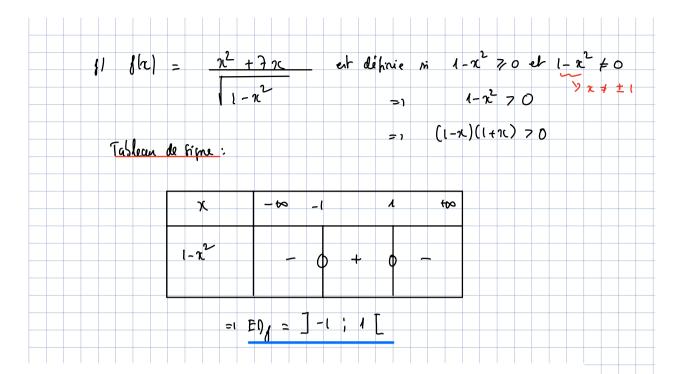
2.2.3 Déterminer l'ensemble de définition des fonctions suivantes :

fonction irrationalles

a)
$$f(x) = \sqrt{x^2 + x + 1}$$


b)
$$f(x) = \sqrt{x-1}\sqrt{x-5}$$


c)
$$f(x) = \sqrt{(x-1)(x-5)}$$

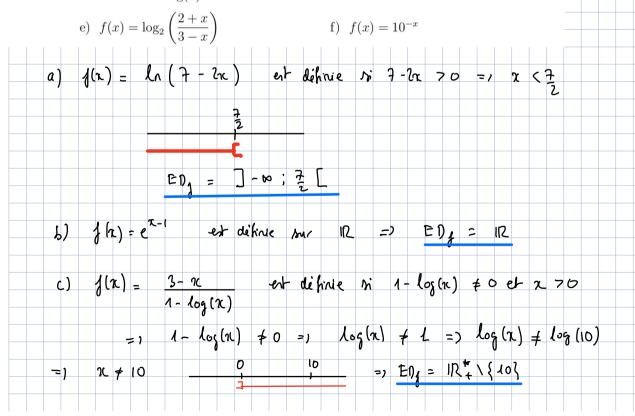

c)
$$f(x) = \sqrt{(x-1)(x-5)}$$
 d) $f(x) = \frac{\sqrt{6-2x}}{x^2 - 5x + 4}$

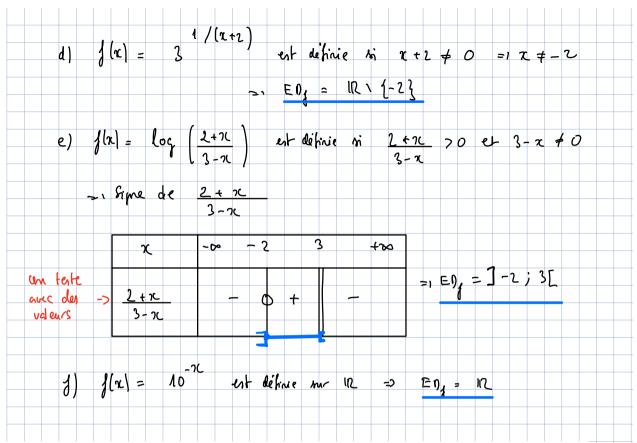
e)
$$f(x) = \sqrt{\frac{x+1}{x-4}}$$
 f) $f(x) = \frac{x^2 + 7x}{\sqrt{1-x^2}}$

f)
$$f(x) = \frac{x^2 + 7x}{\sqrt{1 - x^2}}$$

2.2.5 Déterminer l'ensemble de définition des fonctions suivantes :

a)
$$f(x) = \ln(7 - 2x)$$


$$b) f(x) = e^{x-1}$$


$$f(x) = \frac{3-x}{1-\log(x)}$$

d)
$$f(x) = 3^{1/(x+2)}$$

e)
$$f(x) = \log_2\left(\frac{2+x}{3-x}\right)$$

f)
$$f(x) = 10^{-x}$$

2.2.6 Calculer dans chaque cas la valeur de (f+g)(x), (f-g)(x), $(f \cdot g)(x)$ et $\left(\frac{f}{g}\right)(x)$. Donner ensuite les ensembles de définition des fonctions f + g, f - g, $f \cdot g$ et $\frac{f}{g}$.

a)
$$f(x) = 3$$
 et $g(x) = x^2$

b)
$$f(x) = \frac{2x}{x-4}$$
 et $g(x) = \frac{x}{x+5}$

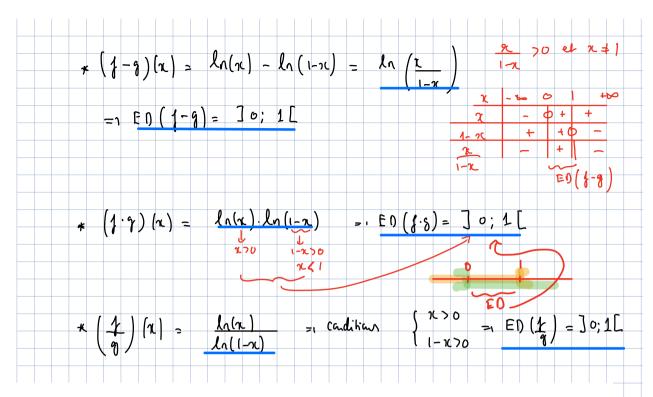
c)
$$f(x) = \sqrt{x}$$
 et $g(x) = \sqrt{4x}$

c)
$$f(x) = \sqrt{x}$$
 et $g(x) = \sqrt{4x}$ d) $f(x) = \ln(x)$ et $g(x) = \ln(1-x)$

a)
$$J(\pi) = 3$$
 of $g(\pi) = \pi^2$

* $(J+g)(\pi) = J(\pi) + g(\pi) = 3 + \pi^2 = \pi^2 + 3 = -E \cap (J+g) = \pi \pi$

* $(J-g)(\pi) = J(\pi) - g(\pi) = 3 - \pi^2 = -\pi^2 + 3 = E \cap (J-g) = \pi \pi$


* $(J-g)(\pi) = J(\pi) - g(\pi) = 3 - \pi^2 = -\pi^2 + 3 = E \cap (J-g) = \pi \pi$

* $(J-g)(\pi) = J(\pi) - g(\pi) = 3 - \pi^2 = -\pi^2 + 3 = E \cap (J-g) = \pi \pi$

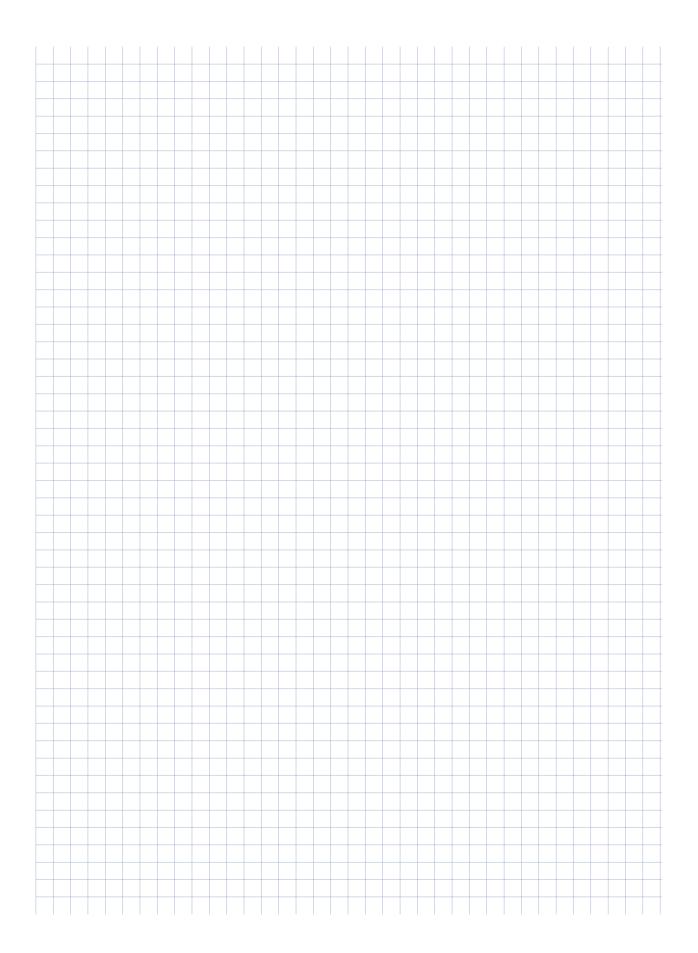
* $(J-g)(\pi) = J(\pi) - g(\pi) = 3 - \pi^2 = -\pi^2 + 3 = E \cap (J-g) = \pi \pi$

* $(J-g)(\pi) = J(\pi) - g(\pi) = 3 - \pi^2 = -\pi^2 + 3 = E \cap (J-g) = \pi \pi$

b)
$$\int \{x^1 = \frac{2x}{x-4} + \frac{1}{x} + \frac{5}{x+5}\} = \frac{x}{x+5}$$
 $x = (\int x^2)(x) = \frac{2x}{x-4} + \frac{x}{x+5} = \frac{3x^2+6x}{(x-4)(x+5)} = \frac{EO(\int x^2) = R \cdot \{-5,4\}}{x-4}$
 $x = (\int x^2)(x) = \frac{2x}{x-4} - \frac{x}{x+5} = \frac{x^2+44x}{(x-4)(x+5)} = \frac{EO(\int x^2) = R \cdot \{-5,4\}}{x-4}$
 $x = \frac{2x}{x-4} - \frac{x}{x+5} = \frac{2x^2}{(x-4)(x+5)} = \frac{EO(\int x^2) = R \cdot \{-5,4\}}{x-4}$
 $x = \frac{2x}{x-4} - \frac{x+5}{x} = \frac{2x(x+5)}{x(x-4)}$
 $x = \frac{2x}{x+5} - \frac{x}{x-4} = \frac{2x(x+5)}{x(x-4)}$
 $x = \frac{2x}{x+5} - \frac{x}{x+5} = \frac{2x}{x+5}$
 $x = \frac{2x}{x+5} - \frac{x}{x+5} = \frac{2x}{x+5} = \frac{2x}{x+5}$
 $x = \frac{2x}{x+5} - \frac{x}{x+5} = \frac{2x}{x+5} = \frac{2x}{x+5}$
 $x = \frac{2x}{x+5} - \frac{x}{x+5} = \frac{2x}{x+5} = \frac{2x}{x+5}$
 $x = \frac{2x}{x+5} - \frac{x}{x+5} = \frac{x}{x+5}$
 $x = \frac{x}{x+5} - \frac{x}{x+5} = \frac{x}{x+5}$
 $x = \frac{x$

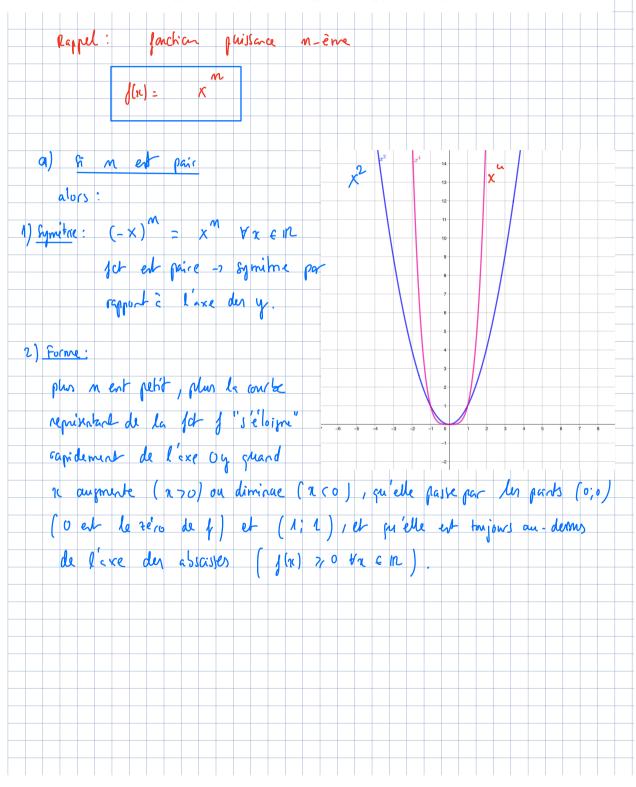
2.2.7 Soit f, g et h trois fonctions définies par f(x) = 2x, g(x) = 2x - 1 et $h(x) = x^2$. Calculer:

a)
$$(f \circ g)(x)$$


b)
$$(h \circ f)(x)$$

b)
$$(h \circ f)(x)$$
 c) $(g \circ h \circ f)(x)$

2.2.8 Dans chacun des cas suivants, donner
$$(f \circ g)(x)$$
, $D_{f \circ g}$, $(g \circ f)(x)$, $D_{g \circ f}$.


a)
$$f(x) = x^2 - 3x$$
 et $g(x) = \sqrt{x+2}$

a)
$$f(x) = x^2 - 3x$$
 et $g(x) = \sqrt{x+2}$ b) $f(x) = \frac{x}{3x+2}$ et $g(x) = \frac{2}{x}$

2.2.11 Tracer dans le même système d'axes les graphes des fonctions suivantes :

$$f_1(x)=x$$
 , $f_2(x)=x^2$, $f_3(x)=x^3$, $f_4(x)=x^4$, $f_5(x)=x^5$

-									_					_				_	_				_			_
+.\		C.																								
6/		8.	M_	est	ir	ya	<u>ic</u> :																			
	. 1	c :L				'																				
	9	Symit	-																							
		La	ne	wk	بالعلة	m	5N	المع	Lu	e	Ao.	L	c.	l.c.		16	د) -	7	M	d	nel	L	un	2 8	hinv	h.
							- 1																			
		cent	rcle	de	. Ce	atre	G		car		(-	n('	٧L	_	-	τ		, ∀2	c 6	ב ות		C	eH	e	1ct	
		et	don	C	une	. 10	nchi	a~	įv	npo	ur	د	_(ca	\leftarrow	16	· n)	+	-1	(n)].					
	_																									
	2)	Form	<u>e</u> :																							
		On	64	L 10	lhacet	4.00	Car				0 1					1	20	hil	٠,	d.,,	1		Cco	۸,	,	
			ILL			74	Yu	_	1)	~ (۲۱۹	34			r	P		-	200	, /4	~	COV	v ot		
		MIN	ľκο	tanl	, <u>l</u>	a.	lch		L	" 5	l'èle	ih	• "	۸,	mo	len	real	- J	, 5 X	e	Ou		srua	nd	QC .	
		'							·						1							•				
		aupr	nec	te	(x	70) 0	u	di	min	we		(n	C	(ه	_,	qu	'ul	<u> </u>	PS	k_	pa	_	les	pci/	24
		9																								
		(0;	ပ		. 0	ev	- 1	٤	<i>tea</i>	6	de	1)	er	4	Λ;	1)	+	!	gu	Ш	_	el	r 0	u-d	ומש
		10) [la.	aL.						\ \		7	11	<u>1</u>		1.	,		IO	*	1	-1-		
		de 1	Cay	ور	2461	623	ask	2.	(16W		t	70		_+	71	.T.]	70	17	2	_	יוכ	+	-	e		
		an-	din	Mun		mu C	9	- () [10	x 1	7	٥	Vγ	ے	: 11	2 *	1								
		001		50005	r				t	7		Ť		Ĥ				1								
																										_
																										+
																										+
																										+

2.2.19 Déterminer si les fonctions suivantes sont paires, impaires ou ni l'un ni l'autre :

a)
$$f(x) = 9x^4 - 3x^2 + 2$$

b)
$$f(x) = x^3 - 2x$$

c)
$$f(x) = 5$$

d)
$$f(x) = x^2 + 8x + 2$$

e)
$$f(x) = \frac{3x^2 - 2}{2x}$$

f)
$$f(x) = \frac{x^5 - x}{x^2 + 1}$$

g)
$$f(x) = \frac{x}{x+2} + \frac{x}{x-2}$$

h)
$$f(x) = x^6 + 3x^2 - \frac{1}{x}$$

i)
$$f(x) = \sqrt{x}$$

j)
$$f(x) = \sqrt{9 - x^2}$$

k)
$$f(x) = |x^3 - 3x| + 1$$

1)
$$f(x) = \frac{x}{|x| - 1}$$

$$f(x) = \sin(x) + \cos(x)$$

n)
$$f(x) = \sin^2(x) \cdot \cos(x)$$

a)
$$f(x) = 9x^4 - 3x^2 + 2 = 1$$
 $f(-x) = 9(-x)^4 - 5(-x)^2 + 2$
 $f(-x) = 9x^4 - 5x^2 + 2 = f(x)$

b)
$$f(x) = x^3 - 2x = 1$$
 $f(-x) = (-x)^3 - 2(-x) = -x^3 + 2x = -(x^3 - 2x)$

=,
$$J(-x) \neq J(x) = 1$$
 f(x) est ai paire, ai impaire

e)
$$f(x) = \frac{3x^2 - 2}{2x}$$
 = $\frac{3(-x)^2 - 2}{2(-x)} = \frac{3x^2 - 2}{-2x} = -\frac{3x^2 - 2}{2x}$

1)
$$f(x) = \frac{x^5 - x}{x^2 + 1} = 1$$
 $f(-x) = \frac{(-x)^5 - (-x)}{(-x)^2 + 1} = -\frac{x^5 + x}{x^2 + 1} = -\frac{x^5 - x}{x^2 + 1}$

```
= 1 (-x)= 1(x) => 1(x) ext raice
    = 1 \left\{ \left(-\pi c\right) = \alpha^{6} + 3x^{2} + 1 + 1(x) = 1 \right\} \left\{ \left(x\right) \text{ m'est ni naire, ni impaire} \right\}
    i) f(x) = [x] = f(-x) = [-x] n'est par définie en le même donnaire
                               = 1 (he) ment ni raice, ni impaire
    j) j(n) - [9-x2 -> f(-x) = [9-(x)2 = [9-x2
                    =1 f(-76) = f(76) =1 f(76) est paire
R1 () ((x) = x3 - 3x +1 = 1(-2x) = (-2x) -3(-2x) +1 = |-23+3x|+1
         = \left| \left( -x \right) = \left| -\left( x^3 - 3x \right) \right| + 1 = \left| x^3 - 3x \right| + 1
1 2) J(x) = \frac{x}{|x|-1} = J(x) = 1 J(x) = 1 paire

1 2) J(x) = \frac{x}{|x|-1} = -\frac{x}{|x|-1} = -\frac{x}{|x|-1}
            =1 1(-x1)=- f(x) =1 /(x) est impaire
n/m) 1(x) = sn(x) + (c)(x) =1 1(-x) = sin(-x) + (o)(-x) = -sin(x) + (o)(x)
              =1 f(-x) + f(x) =1 f(x) m'est ni paire, ni impaire
\frac{Q}{A} ) f(x) = \frac{2}{3}n(x) \cdot \omega_0(x) = \frac{1}{3}(-x) = \frac{1}{3}(-x) \cdot \cos(-x) = (-\frac{1}{3}n(x)) \cdot \cos(x)
            =1 1(-11) = hin(x) con(x) = 1(x) =1 1(n) est paire
```

2.3.1 Déterminer les applications injectives, surjectives ou bijectives.

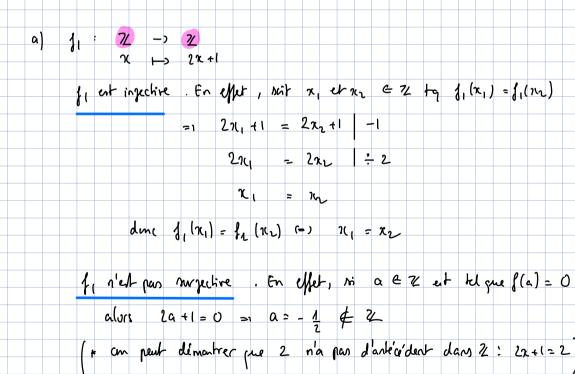
- a) $f_1: \mathbb{Z} \to \mathbb{Z}$ $x \mapsto 2x+1$ d) $f_4: \mathbb{Z} \to \mathbb{Z}$ $x \mapsto x^3$ g) $f_7: \mathbb{N} \to \mathbb{N}$ $x \mapsto x^2$
- b) $f_2: \mathbb{Z} \to \mathbb{Z}$ $x \mapsto x^2$ e) $f_5: \mathbb{Z} \to \mathbb{Z}$ $x \mapsto x$ h) $f_8: \mathbb{R} \to \mathbb{R}$ $x \mapsto x^2$
- c) $f_3: \mathbb{Z} \to \mathbb{Z}$ $x \mapsto x-3$ f) $f_6: \mathbb{N} \to \mathbb{N}$ $x \mapsto x+2$ i) $f_9: \mathbb{R} \to \mathbb{R}$ $x \mapsto 2x+1$

24

Mathématiques II

Gymnase de Burier

1)
$$f_{12}: \mathbb{R} \to \mathbb{R}_+$$


n)
$$f_{14}: \mathbb{R} \to \mathbb{R}$$
 $r \mapsto e^{a}$

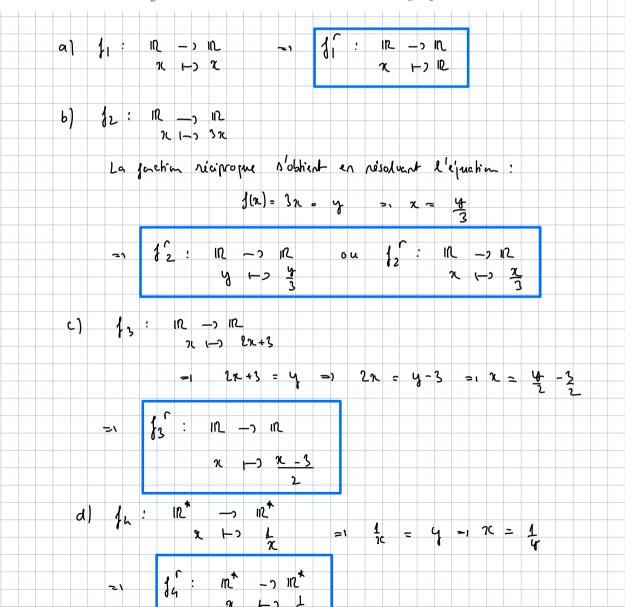
j)
$$f_{10}: \mathbb{R} \to \mathbb{R}$$
 $f_{12}: \mathbb{R} \to \mathbb{R}_+$ $f_{13}: \mathbb{R} \to \mathbb{R}_+$ $f_{14}: \mathbb{R} \to \mathbb{R}_+$ $f_{15}: \mathbb{R} \to \mathbb{R}_+$ $f_{17}: \mathbb{R} \to \mathbb{R}_+$ $f_{18}: \mathbb{R} \to \mathbb{R}_+$ $f_{19}: \mathbb{R} \to \mathbb{R}_+$

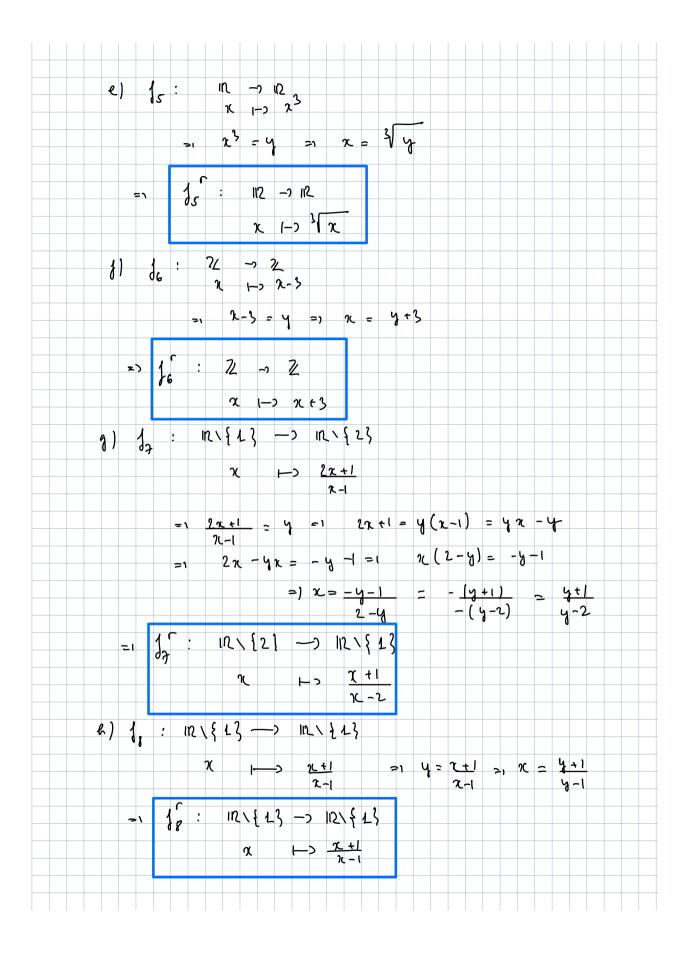
$$: \mathbb{R}_+ \to \mathbb{R}_+$$

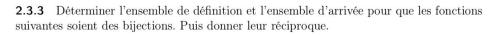
$$r \mapsto r^2$$

o)
$$f_{15} : \mathbb{R}_{+}^{*} \to \mathbb{R}$$

 $x \mapsto \log(x)$


b) {2: 2 -> 2 x -> x² 12 n'est pas injective. En effet, soit x, et no E 7/2 ty 12(x1) = 12(x2) = 1 $n_1^2 = n_2^2$ (=) $n_1^2 - n_2^2 = 0$ =1 $(n_1 - n_2)(n_1 + n_2) = 0$ =1 sang s'ils sont ruls, 2 nontres opposés me sont par ejanx! - I n'est pas injective. ou 1(1) = 1(-1) = 1 -> pan injective) 12 n'est par surgective : 4 y & Z , \$ n & 2 en effet, les manhoes négatifs n'ent pas d'antécident dans & () f3: 2 -> 2 1(-> x-3 f3 et injective. En effet, soit an et no E 2 ty f3 (x1)=f3(x1) $= 1 \qquad \chi_1 - 3 = \chi_2 - 3 = 1 \qquad \chi_1 = \chi_2$ donc 13 (21) = (3(2) (=) 21 = 22 13 ent surperive. En effet Vy ∈ Z, In ∈ Z ta f(nc) = 4 y = 2 6 72 -) 2 - 3 = 2 = 1 x = 5 6 2 = 13 est bijective.

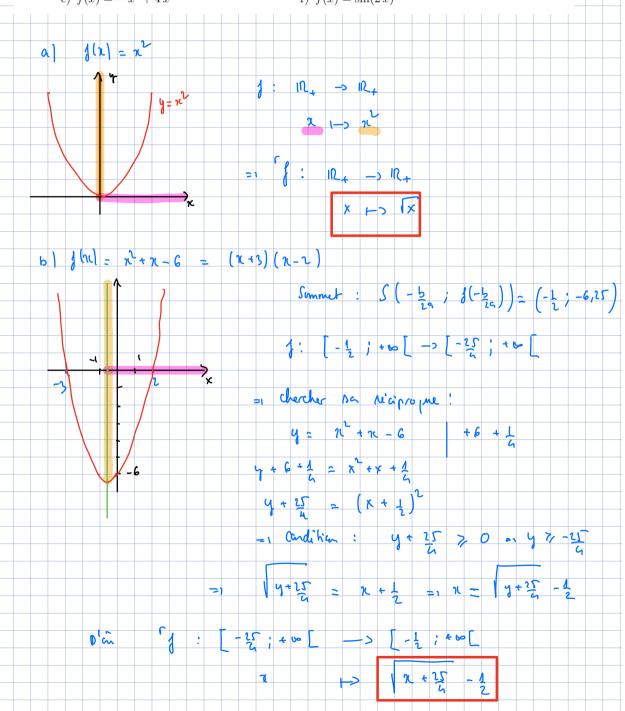


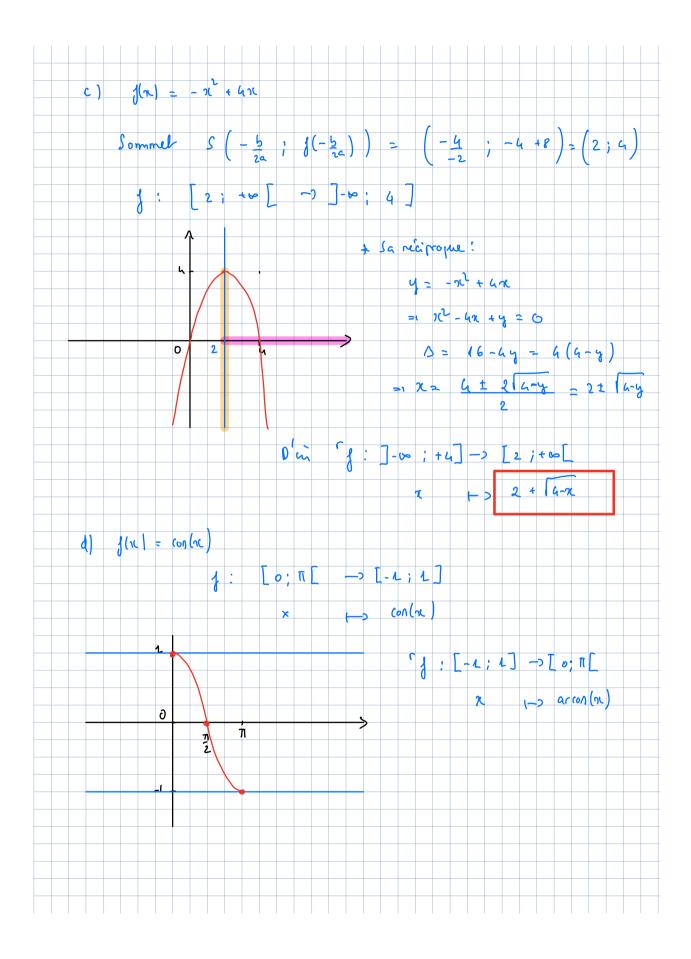

a) $f_1 : \mathbb{R} \to \mathbb{R}$ $x \mapsto x$

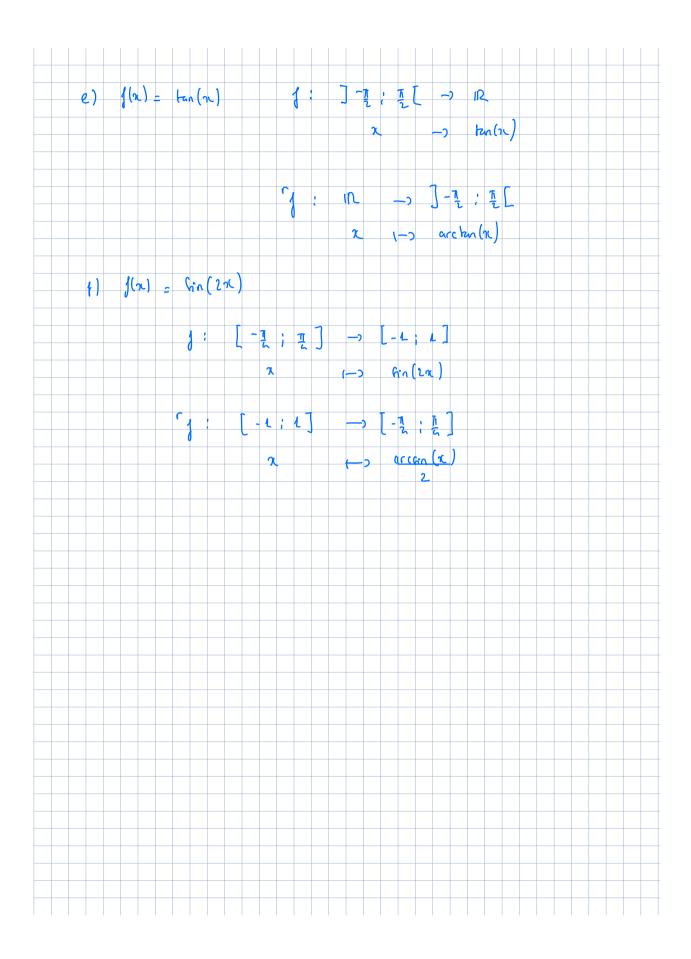
- e) f_5 : $\mathbb{R} \to \mathbb{R}$ $x \mapsto x^3$
- b) $f_2 : \mathbb{R} \to \mathbb{R}$ $x \mapsto 3x$
- f) f_6 : $\mathbb{Z} \to \mathbb{Z}$ $x \mapsto x-3$
- c) $f_3 : \mathbb{R} \to \mathbb{R}$ $x \mapsto 2x + 3$
- g) $f_7: \mathbb{R} \{1\} \rightarrow \mathbb{R} \{2\}$ $x \mapsto \frac{2x+1}{x-1}$

d) $f_4 : \mathbb{R}^* \to \mathbb{R}^*$ $x \mapsto \frac{1}{x}$ h) $f_8: \mathbb{R} - \{1\} \rightarrow \mathbb{R} - \{1\}$ $x \mapsto \frac{x+1}{x-1}$

a) $f(x) = x^2$


 $d) f(x) = \cos(x)$


b) $f(x) = x^2 + x - 6$


e) $f(x) = \tan(x)$

c) $f(x) = -x^2 + 4x$

 $f) f(x) = \sin(2x)$

